Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Biotechnol Bioeng ; 121(1): 250-265, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37881108

RESUMO

The performance of combined reduction of nitrate (NO3 - ) to dinitrogen gas (N2 ) and oxidation of arsenite (As[III]) to arsenate (As[V]) by a bioelectrochemical system was assessed, supported by ecotoxicity characterization. For the comprehensive toxicity characterization of the untreated model groundwater and the treated reactor effluents, a problem-specific ecotoxicity test battery was established. The performance of the applied technology in terms of toxicity and target pollutant elimination was compared and analyzed. The highest toxicity attenuation was achieved under continuous flow mode with hydraulic retention time (HRT) = 7.5 h, with 95%, nitrate removal rate and complete oxidation of arsenite to arsenate. Daphnia magna proved to be the most sensitive test organism. The results of the D. magna lethality test supported the choice of the ideal operational conditions based on chemical data analysis. The outcomes of the study demonstrated that the applied technology was able to improve the groundwater quality in terms of both chemical and ecotoxicological characteristics. The importance of ecotoxicity evaluation was also highlighted, given that significant target contaminant elimination did not necessarily lower the environmental impact of the initial, untreated medium, in addition, anomalies might occur during the technology operational process which in some instances, could result in elevated toxicity levels.


Assuntos
Arsenitos , Água Subterrânea , Poluentes Químicos da Água , Arseniatos/análise , Nitratos/toxicidade , Biodegradação Ambiental , Arsenitos/toxicidade , Arsenitos/análise , Arsenitos/química , Água Subterrânea/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Environ Res ; 218: 115033, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502897

RESUMO

Arsenic (As) is ubiquitous in geothermal fluids, which threatens both water supply safety and local ecology. The co-occurrence of sulfur (S) and As increases the complexity of As migration and transformation in hot springs. Microorganisms play important roles in As-S transformation processes. In the present study, two Tibetan alkaline hot springs (designated Gulu [GL] and Daba [DB]) with different total As concentrations (0.88 mg/L and 12.42 mg/L, respectively) and different sulfide/As ratios (3.97 and 0.008, respectively) were selected for investigating interactions between As-S geochemistry and microbial communities along the outflow channels. The results showed that As-S transformation processes were similar, although concentrations and percentages of As and S species differed between the two hot springs. Thioarsenates were detected at the vents of the hot springs (18% and 0.32%, respectively), and were desulfurized to arsenite along the drainage channel. Arsenite was finally oxidized to arsenate (532 µg/L and 12,700 µg/L, respectively). Monothioarsenate, total As, and sulfate were the key factors shaping the changes in microbial communities with geochemical gradients. The relative abundances of sulfur reduction genes (dsrAB) and arsenate reduction genes (arsC) were higher in upstream portions of GL explaining high thiolation. Arsenite oxidation genes (aoxAB) were relatively abundant in downstream parts of GL and at the vent of DB explaining low thiolation. Sulfur oxidation genes (soxABXYZ) were abundant in GL and DB. Putative sulfate-reducing bacteria (SRB), such as Desulfuromusa and Clostridium, might be involved in forming thioarsenates by producing reduced S for chemical reactions with arsenite. Sulfur-oxidizing bacteria (SOB), such as Elioraea, Pseudoxanthomonas and Pseudomonas, and arsenite-oxidizing bacteria (AsOB) such as Thermus, Sulfurihydrogenibium and Hydrogenophaga, may be responsible for the oxidation of As-bound S, thereby desulfurizing thioarsenates, forming arsenite and, by further abiotic or microbial oxidation, arsenate. This study improves our understanding of As and S biogeochemistry in hot springs.


Assuntos
Arsênio , Arsenitos , Fontes Termais , Microbiota , Arsênio/análise , Arseniatos/análise , Arseniatos/química , Fontes Termais/química , Fontes Termais/microbiologia , Uganda , Bactérias/genética , Oxirredução , Sulfetos , Sulfatos , Enxofre
3.
Sci Rep ; 12(1): 16458, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180503

RESUMO

Arsenic in drinking water is a serious threat for human health due to its toxic nature and therefore, its eliminating is highly necessary. In this study, the ability of different novel and robust machine learning (ML) approaches, including Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting, Gradient Boosting Decision Tree, and Random Forest was implemented to predict the adsorptive removal of arsenate [As(V)] from wastewater over 13 different metal-organic frameworks (MOFs). A large experimental dataset was collected under various conditions. The adsorbent dosage, contact time, initial arsenic concentration, adsorbent surface area, temperature, solution pH, and the presence of anions were considered as input variables, and adsorptive removal of As(V) was selected as the output of the models. The developed models were evaluated using various statistical criteria. The obtained results indicated that the LightGBM model provided the most accurate and reliable response to predict As(V) adsorption by MOFs and possesses R2, RMSE, STD, and AAPRE (%) of 0.9958, 2.0688, 0.0628, and 2.88, respectively. The expected trends of As(V) removal with increasing initial concentration, solution pH, temperature, and coexistence of anions were predicted reasonably by the LightGBM model. Sensitivity analysis revealed that the adsorption process adversely relates to the initial As(V) concentration and directly depends on the MOFs surface area and dosage. This study proves that ML approaches are capable to manage complicated problems with large datasets and can be affordable alternatives for expensive and time-consuming experimental wastewater treatment processes.


Assuntos
Arsênio , Água Potável , Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arseniatos/análise , Arsênio/análise , Água Potável/análise , Humanos , Concentração de Íons de Hidrogênio , Cinética , Aprendizado de Máquina , Porosidade , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
4.
Chemosphere ; 307(Pt 4): 135971, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35987268

RESUMO

The species and fate of arsenic (As) are closely related to sulfide (S-II) in the anaerobic and sulfidic environment. In this work, the mechanisms and kinetics of arsenate (AsV) reduction by S-II at different pHs, S-II/AsV molar ratios, and initial AsV concentrations in the absence (or presence) of Al-hydroxide were studied, where the concentrations of various kinds of As species, namely AsV, arsenite (AsIII), and thioarsenics (ThioAs) were qualitatively and quantitatively determined by liquid chromatography with atomic fluorescence spectrophotometry. The results showed that under acidic or neutral conditions, ThioAs may act as intermediate(s), where amorphous As2S3 precipitate was observed at pH 5 in high S-II condition. By comparison, at pH 9, AsV was probably directly reduced to AsIII with polysulfide as the byproduct. The reaction rate was faster at mildly acidic pH than that of neutral or alkaline pH, as well as in the presence of Al-hydroxide. The findings may give further insights about the role of ThioAs in the biogeochemical cycle of As.


Assuntos
Arsênio , Arsenitos , Arseniatos/análise , Arsênio/análise , Espectrofotometria Atômica , Sulfetos/química
5.
Microbiol Spectr ; 10(5): e0065622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35980185

RESUMO

The environmental deterioration produced by heavy metals derived from anthropogenic activities has gradually increased. The worldwide dissemination of toxic metals in crop soils represents a threat for sustainability and biosafety in agriculture and requires strategies for the recovery of metal-polluted crop soils. The biorestoration of metal-polluted soils using technologies that combine plants and microorganisms has gained attention in recent decades due to the beneficial and synergistic effects produced by its biotic interactions. In this context, native and heavy metal-resistant plant growth-promoting bacteria (PGPB) play a crucial role in the development of strategies for sustainable biorestoration of metal-contaminated soils. In this study, we present a genomic analysis and characterization of the rhizospheric bacterium Bacillus megaterium HgT21 isolated from metal-polluted soil from Zacatecas, Mexico. The results reveal that this autochthonous bacterium contains an important set of genes related to a variety of operons associated with mercury, arsenic, copper, cobalt, cadmium, zinc and aluminum resistance. Additionally, halotolerance-, beta-lactam resistance-, phosphate solubilization-, and plant growth-promotion-related genes were identified. The analysis of resistance to metal ions revealed resistance to mercury (HgII+), arsenate [AsO4]³-, cobalt (Co2+), zinc (Zn2+), and copper (Cu2+). Moreover, the ability of the HgT21 strain to produce indole acetic acid (a phytohormone) and promote the growth of Arabidopsis thaliana seedlings in vitro was also demonstrated. The genotype and phenotype of Bacillus megaterium HgT21 reveal its potential to be used as a model of both plant growth-promoting and metal multiresistant bacteria. IMPORTANCE Metal-polluted environments are natural sources of a wide variety of PGPB adapted to cope with toxic metal concentrations. In this work, the bacterial strain Bacillus megaterium HgT21 was isolated from metal-contaminated soil and is proposed as a model for the study of metal multiresistance in spore-forming Gram-positive bacteria due to the presence of a variety of metal resistance-associated genes similar to those encountered in the metal multiresistant Gram-negative Cupriavidus metallidurans CH34. The ability of B. megaterium HgT21 to promote the growth of plants also makes it suitable for the study of plant-bacteria interactions in metal-polluted environments, which is key for the development of techniques for the biorestoration of metal-contaminated soils used for agriculture.


Assuntos
Arsênio , Bacillus megaterium , Mercúrio , Metais Pesados , Poluentes do Solo , Solo , Bacillus megaterium/genética , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Arseniatos/análise , Biodegradação Ambiental , Cobre , Reguladores de Crescimento de Plantas , Arsênio/análise , Alumínio/análise , Metais Pesados/toxicidade , Microbiologia do Solo , Zinco , Mercúrio/análise , Cobalto/análise , Fosfatos/análise
6.
Environ Sci Pollut Res Int ; 29(51): 77131-77144, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35676577

RESUMO

This work aims at exploring a novel environment-friendly nanomaterial based on natural clay minerals for arsenic removal in aqueous samples. Halloysite nanotubes (HNTs) were selected as the substrate with Mn oxides loaded on the surface to enhance its arsenic adsorption ability and then grafted onto the SiO2-coated Fe3O4 microsphere to get a just enough magnetic performance facilitating the material's post-treatment. The prepared composite (Fe3O4@SiO2@Mn-HNTs) was extensively characterized by various instruments including Fourier transform infrared spectroscope (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TG), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscope (XPS), and X-ray diffraction (XRD). Batch experiments were carried out to get the optimum test conditions for arsenic adsorption by the composite, including pH, loading amount of Mn oxides, adsorbent dosage, and the co-existing ions. The adsorption of AsIII and AsV on Fe3O4@SiO2@Mn-HNTs were both well fitted with the pseudo-second-order kinetic model as well as the Langmuir adsorption isotherm model revealing the chemisorption between arsenic and Fe3O4@SiO2@Mn-HNTs. The adsorption process of AsIII and AsV were both endothermic and spontaneous displayed by the thermodynamic study. The capacities of the prepared composite are 3.28 mg g-1 for AsIII and 3.52 mg g-1 for AsV, respectively, which are comparable or better than those of many reported materials in the references. Toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) tests were carried out to access the secondary environmental risk of the composite and showed that it was quite environmentally stable and can be safely disposed. The composite was successfully applied in environmental water samples indicating its great potential applicability in future.


Assuntos
Arsênio , Arsenitos , Nanotubos , Poluentes Químicos da Água , Purificação da Água , Argila , Arseniatos/análise , Arsênio/análise , Arsenitos/análise , Água/análise , Dióxido de Silício , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Óxidos/química , Cinética , Concentração de Íons de Hidrogênio
7.
Environ Toxicol Chem ; 41(6): 1459-1465, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262236

RESUMO

Historical use of lead arsenate as a pesticide in former orchards of eastern Washington State (USA) has resulted in legacy lead (Pb) and arsenic (As) soil contamination. However, the impacts on plant growth in soils with residual Pb and As contamination have not yet been quantified. To this end, a comparative study of plant growth impacts was performed for native bluegrass (Poa secunda), invasive cheatgrass (Bromus tectorum), and buttercrunch lettuce (Lactuca sativa). Using standard plant growth protocols, germination frequency and biomass growth were measured over a wide range of Pb and arsenate concentrations, with maximum concentrations of 3400 and 790 mg kg-1 for Pb and As, respectively. Results indicated that only the biomass growth for all species decreased in soils with the highest concentrations of Pb and As in the soil, with no impacts on soils with lower residual Pb and arsenate concentrations. No impact on percentage of germination was observed at any soil concentration. These results can be used to determine site-specific soil screening levels for use in ecological risk assessments for Pb and arsenate in soils. Environ Toxicol Chem 2022;41:1459-1465. © 2022 Battelle Memorial Institute. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Arsênio , Poluentes do Solo , Arseniatos/análise , Arseniatos/toxicidade , Arsênio/análise , Arsênio/toxicidade , Chumbo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
8.
Sci Total Environ ; 827: 154155, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35231514

RESUMO

Arsenic is common toxic contaminant, but tracking its mobility through submerged soils is difficult because microscale processes dictate its speciation and affinity to minerals. Analyses on environmental dissolved arsenic (As) species such as arsenate and arsenite currently require highly specialized equipment and large sample volumes. In an effort to unravel arsenic dynamics in sedimentary porewater, a novel, highly sensitive, and field-usable colorimetric assay requiring 100 µL of sample was developed. Two complementary protocols are presented, suitable for sub-micromolar and micromolar ranges. Phosphate is a main interfering substance, but can be separated by measuring phosphate and arsenate under two different acidities. Arsenite is assessed by oxidation of arsenite to arsenate in the low-acidity reagent. Optimization of the protocol and spectral analyses resulted in elimination of various interferences (silicate, iron, sulfide, sulfate), and the assay is applicable across a wide range of salinities and porewater compositions. The new assay was used to study As mobilization processes through the soil of a contaminated brook. Water column sources of arsenic were limited to a modest input by a groundwater source along the flow path. In one of the sites, the arsenite and arsenate porewater profiles showed active iron-driven As redox cycling in the soil, which may play a role in arsenic mobilization and releases arsenite and arsenate into the brook water column. Low arsenic concentrations downstream from the source sites indicated arsenic retention by soil and dilution with additional sources of water. Arsenic is thus retained by the Bossegraben before it merges with larger rivers.


Assuntos
Arsênio , Arsenitos , Arseniatos/análise , Arsênio/análise , Arsenitos/análise , Colorimetria , Ferro/análise , Fosfatos/análise , Solo , Água/análise
9.
Sci Total Environ ; 802: 149796, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464787

RESUMO

Elevated arsenic (As) in soil is of public concern due to the carcinogenicity. Phosphorus (P) strongly influences the adsorption, absorption, transport, and transformation of As in the soil and in organisms due to the similarity of the chemical properties of P and As. In soil, P, particularly inorganic P, can release soil-retained As (mostly arsenate) by competing for adsorption sites. In plant and microbial systems, P usually reduces As (mainly arsenate) uptake and affects As biotransformation by competing for As transporters. The intensity and pattern of PAs interaction are highly dependent on the forms of As and P, and strongly influenced by various biotic and abiotic factors. An understanding of the PAs interaction in 'soil-plant-microbe' systems is of great value to prevent soil As from entering the human food chain. Here, we review PAs interactions and the main influential factors in soil, plant, and microbial subsystems and their effects on the As release, absorption, transformation, and transport in the 'soil-plant-microbe' system. We also analyze the application potential of P fertilization as a control for As pollution and suggest the research directions that need to be followed in the future.


Assuntos
Arsênio , Poluentes do Solo , Arseniatos/análise , Arsênio/análise , Poluição Ambiental , Humanos , Fósforo , Plantas , Solo , Poluentes do Solo/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-33760681

RESUMO

The adsorptive removal of a pollutant from water is significantly affected by the presence of coexisting ions with various concentrations. Here, we have studied adsorption of arsenate [As(V)] by calcined Mg-Fe-(CO3)-LDH in the presence of different cations (Mg2+, Na+, K+, Ca2+, and Fe3+) and anions (CO32‒, Cl‒, PO43‒, SO42‒, and NO3‒) with their different concentrations to simulate the field condition. The experimental results indicated that Ca2+, Mg2+, and Fe3+ have a synergistic effect on removal efficiency of As(V), whereas PO43‒ and CO32‒ ions have a significant antagonistic impact. Overall, the order of inhibiting effect of coexisting anions on adsorption of As(V) was arrived as NO3-˂Cl-

Assuntos
Arseniatos/isolamento & purificação , Hidróxidos/química , Íons/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Arseniatos/análise , Arseniatos/química , Carbonatos/química , Íons/análise , Ferro/química , Cinética , Magnésio/química , Redes Neurais de Computação , Fosfatos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos
11.
Chemosphere ; 262: 127596, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32791364

RESUMO

Herein, we have designed and synthesized a metal-organic framework (MOF)-like lanthanum-methanoate (LaMe) nanocomplex for the remediation of arsenate (AsO43-) from aqueous environment, in which AsO43- replaces the formic acid from LaMe through ligand exchange, partially disintegrates the crystal lattice, and is re-precipitated as LaAsO4. Consequently, the sucrose-derived biomass carbon (SBC) was utilized as supporting material to develop nanohybrid of LaMe@SBC to inhibit the solubility of lanthanum from LaMe, and enhance the adsorption ability towards AsO43- from water. The maximum adsorption densities of AsO43- on SBC and LaMe were (0.059 and 0.793) mmol/g, respectively. On the other hand, the synergistically re-constructed LaMe@SBC nanohybrid possesses AsO43- adsorption density of 0.918 mmol/g at 25 °C. The studies, including contact time, solution pH, competitive anions, and initial AsO43- concentration, were optimized for maximum AsO43- removal. The adsorption density of the LaMe@SBC for AsO43- removal was pH-dependent, and possesses the maximum adsorption density at pH (4.0 and 5.0); moreover, the removal process was highly selective in the presence of common co-existing anions, except PO43- ion. The adsorption isotherm and kinetics of the LaMe@SBC nanohybrid closely fitted the Langmuir isotherm and pseudo-second-order kinetic models, respectively. The surface interactions among the LaMe@SBC nanohybrid and AsO43- were revealed through FTIR and PXRD analyses. The adsorption of AsO43- on the LaMe@SBC nanohybrid was primarily a chemisorption, namely ligand exchange and electrostatic interactions. The results reported in this research work highlight the feasibility of the LaMe@SBC nanohybrid as a real adsorbent for the removal of AsO43- from aqueous environment.


Assuntos
Arseniatos/química , Lantânio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Arseniatos/análise , Biomassa , Carbono , Concentração de Íons de Hidrogênio , Cinética , Sacarose , Água/química , Poluentes Químicos da Água/análise
12.
Salud Publica Mex ; 62(3): 262-269, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32520484

RESUMO

OBJECTIVE: To describe interindividual metabolism variations and sociodemographic characteristics associated to urinary arsenic, and to estimate the arsenic contamination in water from urinary total arsenic (TAs). MATERIALS AND METHODS: Women (n=1 028) from northern Mexico were interviewed about their sociodemographic characteristics and their urinary concentrations of arsenic species were measured by liquid chromatography. Inorganic arsenic (iAs) in water was estimated from urinary TAs. RESULTS: Women were 20-88 years old. TAs in urine ranged from p10=3.41 to p90=56.93 µg/L; 74% of women had levels >6.4 µg/L. iAs in water varied from p10=3.04 to p90=202.12 µg/L; 65% of women had concentrations >10 µg/L, and 41%, concentrations >25 µg/L. Large variations in iAs metabolism were observed. TAs was significantly negatively associated with age and schooling, and positively with the state of residence. CONCLUSIONS: Exposure to iAs is an environmental problem in Mexico. Individual variations in metabolism are a challenge to design prevention and control programs.


OBJETIVO: Describir las variaciones interindividuales del metabolismo y las características sociodemográficas asociadas con el arsénico urinario, así como estimar su contaminación en el agua. MATERIAL Y MÉTODOS: Se entrevistó a 1 028 mujeres del norte de México; por cromatografía de líquidos se midieron los metabolitos urinarios de arsénico y, a partir de ellos, se estimó la concentración en agua. RESULTADOS: Las mujeres tuvieron 20-88 años. El arsénico urinario varió de p10=3.41 a p90=56.93 µg/L; 74% de las mujeres tuvieron niveles >6.4 µg/L. El arsénico en agua varió de p10=3.04 a p90=202.12 µg/L; 65% de las mujeres tenían concentraciones >10 µg/L, y 41%, >25 µg/L. Se observaron amplias variaciones en el metabolismo del arsénico. El arsénico urinario se asoció negativamente con la edad y escolaridad, y positivamente con el estado de residencia. CONCLUSIONES: La exposición a arsénico es un problema ambiental en México. Las variaciones individuales en su metabolismo son un desafío para diseñar programas de prevención y control.


Assuntos
Arsênio/urina , Exposição Ambiental , Herbicidas/urina , Poluentes Químicos da Água/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Arseniatos/análise , Arseniatos/metabolismo , Arseniatos/urina , Arsênio/análise , Arsênio/metabolismo , Arsenicais/análise , Arsenicais/metabolismo , Arsenicais/urina , Ácido Cacodílico , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Herbicidas/análise , Herbicidas/metabolismo , Humanos , México , Pessoa de Meia-Idade , Fatores Socioeconômicos , Adulto Jovem
13.
Chemosphere ; 258: 127370, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32554019

RESUMO

Porous luffa plant fibre (LF) was grafted with Fe and Zr, and the ability of the fabricated adsorbents to remove arsenate (As(V)) from water was investigated in batch and column adsorption experiments. The Langmuir adsorption capacity (mg g-1) at pH 7 of LF was found to be 0.035, which increased to 2.55 and 2.89 after being grafted with Fe (FLF-3) and Zr (ZLF-3), respectively. Grafting with Fe and Zr increased the zeta potential and zero point of charge (ZPC) of LF (from pH 3.9 to 7.4 for Fe grafting and to 7.6 for Zr grafting), due to chemical bonding of the metals, possibly with the hydroxyl and carboxylic groups in LF as indicated in FTIR peaks. Zeta potential and ZPC decreased after As adsorption owing to inner-sphere complexation mechanism of adsorption. The increase of pH from 3 to 10 progressively reduced the adsorbents' adsorption capacity. Co-existing anions weakened the As(V) removal efficiency in the order, PO43- > SiO32- > CO32- > SO42-. Adsorption kinetics data fitted well to the Weber and Morris model, which revealed initial fast and subsequent slow rates of intra-particle As diffusion into the bigger pores and smaller pores, respectively. Column adsorption data fitted well to the Thomas model with the predicted adsorption capacities in the same order as in the batch adsorption experiment (ZLF-3 > FLF-3 > LF).


Assuntos
Arseniatos/análise , Água Potável/química , Ferro/química , Luffa/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Zircônio/química , Adsorção , Água Potável/normas , Concentração de Íons de Hidrogênio , Cinética
14.
Salud pública Méx ; 62(3): 262-269, May.-Jun. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1377312

RESUMO

Abstract: Objective: To describe interindividual metabolism variations and sociodemographic characteristics associated to urinary arsenic, and to estimate the arsenic contamination in water from urinary total arsenic (TAs). Materials and methods: Women (n=1 028) from northern Mexico were interviewed about their sociodemographic characteristics and their urinary concentrations of arsenic species were measured by liquid chromatography. Inorganic arsenic (iAs) in water was estimated from urinary TAs. Results: Women were 20-88 years old. TAs in urine ranged from p10=3.41 to p90=56.93 μg/L; 74% of women had levels >6.4 μg/L. iAs in water varied from p10=3.04 to p90=202.12 μg/L; 65% of women had concentrations >10 μg/L, and 41%, concentrations >25 μg/L. Large variations in iAs metabolism were observed. TAs was significantly negatively associated with age and schooling, and positively with the state of residence. Conclusion: Exposure to iAs is an environmental problem in Mexico. Individual variations in metabolism are a challenge to design prevention and control programs.


Resumen: Objetivo: Describir las variaciones interindividuales del metabolismo y las características sociodemográficas asociadas con el arsénico urinario, así como estimar su contaminación en el agua. Material y métodos. Se entrevistó a 1 028 mujeres del norte de México; por cromatografía de líquidos se midieron los metabolitos urinarios de arsénico y, a partir de ellos, se estimó la concentración en agua. Resultados: Las mujeres tuvieron 20-88 años. El arsénico urinario varió de p10=3.41 a p90=56.93 μg/L; 74% de las mujeres tuvieron niveles >6.4 μg/L. El arsénico en agua varió de p10=3.04 a p90=202.12 μg/L; 65% de las mujeres tenían concentraciones >10 μg/L, y 41%, >25 μg/L. Se observaron amplias variaciones en el metabolismo del arsénico. El arsénico urinario se asoció negativamente con la edad y escolaridad, y positivamente con el estado de residencia. Conclusión: La exposición a arsénico es un problema ambiental en México. Las variaciones individuales en su metabolismo son un desafío para diseñar programas de prevención y control.


Assuntos
Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Arsênio/urina , Poluentes Químicos da Água/análise , Exposição Ambiental , Herbicidas/urina , Arseniatos/urina , Arseniatos/análise , Arseniatos/metabolismo , Arsênio/análise , Arsênio/metabolismo , Arsenicais/urina , Arsenicais/análise , Arsenicais/metabolismo , Fatores Socioeconômicos , Ácido Cacodílico , Estudos de Casos e Controles , Cromatografia Líquida , Herbicidas/análise , Herbicidas/metabolismo , México
15.
Chemosphere ; 253: 126736, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302910

RESUMO

The covalent organic framework (COF) is made light elements linked by covalent networks. This study synthesize and characterized, and for the first time applied the produced EB-COF:Br as adsorbent for phosphate and arsenate removal from nearly neutral waters. The synthesized COF was first proven structurally stable in solutions of 75% H3PO4, 6 M HCl, or 6 M NaOH. Then the phosphate adsorption onto the EB-COF:Br was shown to be an endothermic process with maximum adsorption capacity at 25, 35 and 45 °C as 25.3, 34.7 and 35.3 mg/g COF, respectively; and the corresponding arsenate adsorption process being an exothermic process with maximnum adsorption capacity as 53.1, 27.5 and 5.1 mg/g, respectively. The synthesized COF could also effectively adsorb phosphate and arsenate ions from river water (pH 7.45) but at reduced adsorption capacities. The electrostatic interactions between the negative charge on phosphate or arsenate ions and the positively charged (N+-) of COF, and the hydrogen bondings between H atom on phosphate or arsenate ions and the (-CO) group of COF were the dominating mechanisms for the present adsorption process. The strong electrostatic interactions for arsenate contributed to its higer adsorption capacity than noted for phosphate at 25 °C. However, the disturbed hydrogen bonding induced by mismatched sizes of arsenate ion and the adsorption sites surrounded by the (N+-) and the (-CO) groups reduced the stability of arsenate to against temperature and external anion challenges. The use of the EB-COF; Br as industrial adsorbent was also discussed.


Assuntos
Arseniatos/análise , Estruturas Metalorgânicas/química , Fosfatos/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Temperatura
16.
J Am Soc Mass Spectrom ; 31(6): 1260-1270, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32342697

RESUMO

The chemical identity of arsenosugar phospholipids (As-PL) as mono- (i.e., lyso, L-As-PL) and diacyl-arsenosugar PL in four edible and common marine alga samples, such as nori (Porphyra spp.), wakame (Undaria pinnatifida), dulse (Palmaria palmata), and kombu (Saccharina japonica), was successfully investigated. Adopting negative polarity electrospray ionization (ESI), not common for As-PL, conjugated with hydrophilic interaction liquid chromatography (HILIC) and mass spectrometry (MS), performed either at low resolution using a linear ion trap (LIT) with sequential MSn (n = 2, 3) or at high resolution using a high-resolution/high-accuracy Fourier-transform MS (FTMS), based on an orbital trap instrument, more than 20 As-PL and 2 L-As-PL species were identified. The absence of As-PL standard compounds encouraged us to generate an in-house-built database of As-PL/L-As-PL for a rapid and simple classification. Despite their compositional diversity, tandem MS of deprotonated As-PL and L-As-PL ([M - H]-) demonstrated the occurrence of a highly diagnostic product ion at m/z 389.0 ([AsC10H19O9P]-). The fatty acid composition and distribution of As-PL were easily assigned on the basis of the ratio intensity between sn-1 and sn-2 product ions. Indeed, the preferential formation of [R1C3H5O4P]- ions over [R2C3H5O4P]- ions, both containing the glycerol backbone, enabled the regiochemical assignment of As-PL. These outcomes were confirmed by MSn (n = 2, 3) analyses and using sn-1- and sn-2-regioselective hydrolase enzymes (i.e., phospholipases A1 and A2). The predominant As-PL's in samples of nori (red alga), wakame, and kombu (both brown algae) were identified as containing palmitic acyl chains (i.e., As-PL958 (As-PL 16:0/16:0) with ca. 66 ± 3, 82 ± 4, and 58 ± 3% as relative abundances, respectively), while the main species in dulse (red alga) samples was As-PL982 (As-PL 18:1/16:1) at ca. 38 ± 3%.


Assuntos
Arseniatos/análise , Cromatografia Líquida/métodos , Monossacarídeos/análise , Fosfolipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Arseniatos/química , Arseniatos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Monossacarídeos/química , Monossacarídeos/metabolismo , Fosfolipases A/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Rodófitas/química , Undaria/química
17.
Anal Chim Acta ; 1106: 139-147, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145842

RESUMO

Arsenic contaminations in waters are concerned worldwide. This research was to examine an in situ method of aqueous binding concentration and diffusion (ABCD) technique with an aqueous solution of metal immobilized polycationic polymer (MIP) as a binding phase and a dialysis membrane as a diffusive layer to pre-concentrate trace arsenate in lake waters. Although the maximum binding capacity of arsenate to MIP was influenced by the presence of anions in water, the binding phase was capable of pre-concentrating arsenate in lake water. This in situ pre-concentration technique was combined with light emitting diodes (LED) for semi-on line detection of trace arsenate in waters. The system was eventually validated in lake waters in lab and in natural lake waters in China. In this work, new colorimetric method for detection of arsenate in the binding phase has been developed to minimize the potential spectra interferences of silicates, phosphates and other oxyanions. Potassium iodide was used to reduce arsenate to arsenite before the solution was mixed with the colour generation reagent of RhodamineB.


Assuntos
Arseniatos/análise , Poluentes Químicos da Água/análise , China , Colorimetria , Difusão , Lagos , Água/química
18.
Isotopes Environ Health Stud ; 56(3): 297-313, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32138548

RESUMO

Selenium and oxygen isotope systematics can be useful tools for tracing sources and fate of Se oxyanions in water. In order to measure δ18O values of selenate, SeO4 2- must first be sequestered from water by precipitation as BaSeO4(s). However, other dissolved oxyanions insoluble with Ba2+ require removal. Dissolved selenate was separated from dissolved selenite, carbonate, phosphate, and arsenate by addition of Ce3+ cations that quantitatively removed these oxyanions by precipitation as insoluble Ce2(SeO3)3(s), Ce2(CO3)3(s), CePO4(s), and CeAsO4(s), respectively. δ18O-selenate (-8.19 ± 0.17 ‰) did not change after four replicates of selenite removal by Ce2(SeO3)3(s) precipitation and Ce3+ removal by cation exchange (-8.20 ± 0.14, -8.32 ± 0.09, -8.17 ± 0.13, and -8.29 ± 0.13 ‰). δ18O-selenate values (-10.86 ± 0.45 ‰) were preserved also when selenate was pre-concentrated on anion exchange resin, quantitatively retrieved by elution, and processed with Ce3+ to remove interfering oxyanions (-10.77 ± 0.07 ‰). The extraction and purification steps developed here successfully isolated dissolved selenate from interfering oxyanions while preserving δ18O-selenate values. This method should be useful for characterizing δ18O-selenate when present with the co-occurring oxyanions above in laboratory experiments and field sites with high Se concentrations, although further research is required for methods to eliminate any co-occurring sulphate.


Assuntos
Arseniatos/análise , Carbonatos/análise , Isótopos de Oxigênio/análise , Fosfatos/análise , Ácido Selênico/análise , Ácido Selenioso/análise , Poluentes Químicos da Água/análise , Selênio/análise , Soluções , Sulfatos/análise
19.
Ecotoxicol Environ Saf ; 193: 110334, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32088552

RESUMO

The bioaccessibility of total arsenic (tAs) and arsenic species in Bellamya aeruginosa collected from Xiangjiang River was evaluated using an in vitro digestion model, to assess the potential health risks to local residents. The tAs concentrations in gastropod samples ranged from 1.98 to 6.33 mg kg-1 (mean 3.79 ± 1.60 mg kg-1). Five arsenic species including arsenite [As(III)], arsenate [As(V)], dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) were detected. Inorganic arsenic (iAs) concentrations, which were about a half of organic arsenic (oAs), were higher than the maximum permissible limit (≤0.50 mg kg-1 in aquatic products). Bioaccessible concentrations of tAs in digestive juices were found to be decreased in the order: intestinal phase > gastric phase > salivary phase. As(III) and AsC were the predominant species, but AsB was not detectable in all digestive juices. Bioaccessible iAs concentrations, which were close to the level of bioaccessible oAs, were not significantly different among three digestive juices, but also above 0.50 mg kg-1. Accordingly, bioaccessibility of tAs was highest in intestinal phase (48%), then in gastric phase (40%), and lowest in salivary phase (33%). Bioaccessibility of As(III) was close to 100%, and bioaccessibility of iAs was much higher than that of oAs. The mean values of target hazard quotient (THQ) and bioaccessible THQ were 0.80 and 0.70, respectively. The probability of experiencing non-carcinogenic effects was reduced to 18% down from 22% as considering iAs bioaccessibility. The mean values of carcinogenic risk (CR) and bioaccessible CR were higher than the acceptable value (1 × 10-4). Gastropod consumption from sampling sites may cause a potential carcinogenic risk.


Assuntos
Arsênio/toxicidade , Gastrópodes/química , Rios/química , Poluentes Químicos da Água/toxicidade , Animais , Arseniatos/análise , Arsênio/análise , Arsenicais/análise , Arsenitos/análise , Ácido Cacodílico/análise , Humanos , Modelos Biológicos , Medição de Risco , Poluentes Químicos da Água/análise
20.
Appl Microbiol Biotechnol ; 104(6): 2691-2699, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32002600

RESUMO

Despite the known hazardous effects of antimony (Sb) on human health, Sb monitoring biosensors have not been as actively investigated as arsenic (As) biosensors. Whole-cell bioreporters (WCBs) employing an arsenic-responsive operon and a regulatory protein (ArsR) are reportedly capable of monitoring arsenite, arsenate, and antimonite. However, the potential of WCBs as Sb biosensors has been largely ignored. Here, the metal-binding site of ArsR (sequenced as ELCVCDLCTA from amino acid number 30 to 39) was modified via genetic engineering to enhance Sb specificity. By relocating cysteine residues and introducing point mutations, nine ArsR mutants were generated and tested for metal(loid) ion specificity. The Sb specificity of WCBs was enhanced by the C37S/A39C and L36C/C37S mutations on the As binding site of ArsR. Additionally, WCBs with other ArsR mutants exhibited new target sensing capabilities toward Cd and Pb. Although further research is required to enhance the specificity and sensitivity of WCBs and to broaden their practical applications, our proposed strategy based on genetic engineering of regulatory proteins provides a valuable basis to generate WCBs to monitor novel targets.


Assuntos
Antimônio/análise , Técnicas Biossensoriais/métodos , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Engenharia Genética/métodos , Transativadores/genética , Arseniatos/análise , Arsenitos/análise , Sítios de Ligação , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA